

    
      
          
            
  
django-gm2m

© 2014-2020 Thomas Khyn

Django generic many-to-many field implementation.

This django application exposes a GM2MField that combines
the features of the standard Django ManyToManyField and
GenericForeighKey and that can be used exactly the same way.

It has been tested with Django 2.2.* and 3.0.* and their matching Python versions (3.5 to 3.8).

If you like django-gm2m and find it useful, you may want to thank me and
encourage future development by sending a few mBTC / mBCH / mBSV at this address:
1EwENyR8RV6tMc1hsLTkPURtn5wJgaBfG9.

Documentation contents:



	Quick start
	Installation

	First steps





	Features
	Reverse relations

	Deletion

	Signals

	Prefetching

	Through models

	GM2MField constructor’s other parameters

	Migrations

	System checks

	Future improvements





	Warnings
	Form field and django admin

	(De)Serialization












Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Quick start


Installation

As straightforward as it can be, using pip:

pip install django-gm2m





You then need to make sure that django.contrib.contenttypes appears
somewhere in your INSTALLED_APPS setting, and add gm2m to it:

INSTALLED_APPS = [
   ...
   'django.contrib.contenttypes',
   ...
   'gm2m',
]








First steps

You can use the exposed GM2MField exactly the same way as a
ManyToManyField.

Suppose you have some models describing videos types:

>>> from django.db import models
>>>
>>> class Video(models.Model):
>>>     title = models.CharField(max_length=255)
>>>
>>> class Movie(Video):
>>>     pass
>>>
>>> class Documentary(Video):
>>>     pass





Now, if you want to have a field for the preferred videos of a User, you simply
need to add a default GM2MField to the User model:

>>> from gm2m import GM2MField
>>>
>>> class User(models.Model):
>>>     name = models.CharField(max_length=255)
>>>     preferred_videos = GM2MField()





Now you can add videos to the preferred_videos set:

>>> me = User.objects.create(name='Me')
>>> v_for_vendetta = Movie.objects.create(title='V for Vendetta')
>>>
>>> me.preferred_videos.add(v_for_vendetta)





or:

>>> me.preferred_videos = [v_for_vendetta]





You can obviously mix instances from different models:

>>> citizenfour = Documentary.objects.create(title='Citizenfour')
>>> me.preferred_videos = [v_for_vendetta, citizenfour]





From a User instance, you can fetch all the preferred videos:

>>> [v.title for v in me.preferred_videos]
['V for Vendetta', 'Citizenfour']





… which you may filter by model using the Model or Model__in
keywords:

>>> [v.title for v in me.preferred_videos.filter(Model=Movie)]
['V for Vendetta']
>>> [v.title for v in me.preferred_videos.filter(Model__in=[Documentary])]
['Citizenfour']





That’s it regarding the basic usage of django-gm2m. You’ll probably want to
have a look at the more advanced features it offers.







          

      

      

    

  

    
      
          
            
  
Features

django-gm2m…


	Works like the built-in Django related fields


	Creates one table per relation, like ManyToManyField, and not one big
table linking anything to anything (django-generic-m2m [https://pypi.python.org/pypi/django-generic-m2m]’s default approach)


	Does not require you to modify nor monkey-patch the existing model classes
that need to be linked


	Provides automatic reverse relations when an instance is added


	Enables related objects prefetching


	Allows the use of Through models


	Allows you to customize the deletion behaviour


	Supports migrations




In this page, we’ll make use of the models that were described in the
Quick start section:

>>> from django.db import models
>>> from gm2m import GM2MField
>>>
>>> class Video(models.Model):
>>>     pass
>>>
>>> class Movie(Video):
>>>     pass
>>>
>>> class Documentary(Video):
>>>     pass
>>>
>>> class User(models.Model):
>>>     preferred_videos = GM2MField()
>>>
>>>
>>> me = User.objects.create(name='Me')
>>>
>>> v_for_vendetta = Movie.objects.create(title='V for Vendetta')
>>> citizenfour = Documentary.objects.create(title='Citizenfour')
>>>
>>> me.preferred_videos = [v_for_vendetta, citizenfour]






Reverse relations

We’ve seen how you could access all the preferred_videos of a given user.
But what if you want to access all the users that have bookmarked a given
video? django-gm2m provides that out of the box, with a bit of magic.


Automatic creation

Indeed, even without having to explicitly create reverse relations (e.g by
providing models to the GM2MField constructor), they are automatically
created when an instance of a yet unknown model is added. This means that after
having added movie to a User’s preferred_videos, you can do:

>>> [u.name for u in movie.user_set]
['Me']





However, it is important to remember that if no instance of a model has ever
been added to the set, retrieving the <modelname_set> will raise an
AttributeError:

>>> class Opera(Video):
>>>     pass
>>>
>>> bartered_bride = Opera.objects.create(title="The Bartered Bride")
>>> [u.name for u in bartered_bride.user_set]
AttributeError: 'Opera' object has no attribute 'user_set'





Indeed, the GM2MField has no idea what relation it is expected to create
until you provide it with a minimum of information.


Warning

If automatic relations have been added during a session, be aware that they
will not necessarily be available in another session. If you restart your
server, for example, the automatically created relations will be lost. Read
on to find how to tackle this issue.






Manual creation

If you want some reverse relations to be created before any instance is added,
so that retrieving the <modelname_set> attribute never raises an exception,
it is possible to explicitly provide some models to the GM2MField
constructor. You may use model names ('app.Model' or 'Model' if you’re
in the same module) if necessary to avoid circular references.

Let’s say that instead of:

>>> class User(models.Model):
>>>     preferred_videos = GM2MField()





We actually write:

>>> class User(models.Model):
>>>     preferred_videos = GM2MField(Movie, 'Opera')





Then the reverse relations from Movie and Opera are created when the
model classes are created and they are available even if no instance has been
added yet:

>>> [u.name for u in bartered_bride.user_set]
[]





Note that providing models to GM2MField does not prevent you from adding
instances from other models. You can still add instances from other models, and
the relation will be created. Providing a list of models will only create
reverse relations by default, nothing more.




Manual creation on existing model

If you need to add relations afterwards, or if the GM2MField is defined in
a third-party library you cannot or do not want to patch, you can use the
GM2MField’s add_relation method.

Suppose we could not amend our User class to add the reverse relations to
Movie and Opera by providing arguments to the GM2MField constructor,
this would have exactly the same effect:

>>> User.preferred_videos.add_relation(Movie)
>>> User.preferred_videos.add_relation('Opera')





As shown, you can also use model names (app.Model) with add_relation.




Operations and queries on reverse relations

The reverse relations provide you with the full set of operations that normal
Django reverse relation exposes: add, remove and clear. set is
also available from version 0.4.2.

A reverse relation also enables you to use lookup chains in your queries:

>>> jack = User.objects.create(name='Jack')
>>> jack.preferred_videos.add(bartered_bride)
>>> [o.name for o in Opera.objects.filter(user__name='Jack')]
['The Bartered Bride']








Related models lookup

From version 0.4.3 onwards, you can access all the models related to a
GM2MField using the get_related_models method, that takes an
include_auto optional argument if you want to include the automatically
created models:

>>> User.preferred_videos.get_related_models()
[<class 'Movie'>, <class 'Opera'>]
>>>
>>> User.preferred_videos.get_related_models(include_auto=True)
[<class 'Movie'>, <class 'Opera'>, <class 'Documentary'>]





Indeed, in that example, Movie, Opera and Theater have been added
to preferred_videos, while Documentary has only been automatically
added with the addition of citizenfour to me’s preferred videos (at
the top of the page).






Deletion

By default, when a source or target model instance is deleted, all relations
linking this instance are deleted. It is possible to change this behavior with
the on_delete, on_delete_src and on_delete_tgt keyword arguments
when creating the GM2MField:

>>> from gm2m.deletion import DO_NOTHING
>>>
>>> class User(models.Model):
>>>     preferred_videos = GM2MField(Movie, 'Documentary',
>>>                                  on_delete=DO_NOTHING)





If you only want this behaviour on one side of the relationship (e.g. on the
source model side), use on_delete_src or on_delete_tgt:

>>> class User(models.Model):
>>>    preferred_videos = GM2MField(Movie, 'Documentary',
>>>                                 on_delete_src=DO_NOTHING)





on_delete_src and on_delete_tgt override on_delete.

Several deletion functions are available:


	CASCADE [default]

	The relation is deleted with the instance it is related to. The database
remains consistent, no ForeignKey nor GenericForeignKey can point
to a non-existent object after the operation.



	DO_NOTHING

	The relation is not deleted with the instance it is related to. It is your
responsibility to ensure that the database remains consistent after the
deletion operation.



	CASCADE_SIGNAL

	Same as CASCADE but sends the deleting signal (see Signals below).



	CASCADE_SIGNAL_VETO

	Sends a deleting signal, and if no receiver vetoes the deletion
by returning True or a Truthy value, calls CASCADE. Be careful using
this one as when the deletion is vetoed, the database is left in an
inconsistent state.



	DO_NOTHING_SIGNAL

	Same as DO_NOTHING but sends a deleting signal.








Signals

The signals listed below can be imported from the gm2m.signals module.


	deleting

	Sent when source model (= where the GM2MField is defined) instances are
deleted. The sender is the GM2MField instance. The receivers take
2 keyword arguments:


	del_objs, an iterable containing the objects being deleted in the
first place


	rel_objs, an iterable containing the objects related to the objects
in del_objs, and that are to be deleted if cascade deletion is
enabled




This signal can be used to customize the behaviour when deleting a source
or target instance.








Prefetching

Prefetching works exactly the same way as with django ManyToManyField:

>>> User.objects.all().prefetch_related('preferred_videos')





will, in a minimum number of queries, prefetch all the videos in all the users’
preferred_video lists.




Through models

Custom through models are also supported. The minimum requirements for through
model classes are:



	one ForeignKey to the source model


	one GenericForeignKey with its ForeignKey and CharField







For example:

>>> class User(models.Model):
>>>     preferred_videos = GM2MField(through='PreferredVideos')
>>>
>>> class PreferredVideos(models.Model):
>>>     user = models.ForeignKey(User)
>>>     video = GenericForeignKey(ct_field='video_ct', fk_field='video_fk')
>>>     video_ct = models.ForeignKey(ContentType)
>>>     video_fk = models.CharField(max_length=255)
>>>
>>>     ... any relevant field (e.g. date added)





If there is only one ForeignKey to the source model (User in the above example)
and only one GenericForeignKey in the target model, they will automatically be
used for the relationship. Otherwise, if there are more of them, you must
provide a through_fields argument (a list or tuple of 2 to 4 field names) to
the GM2MField constructor.




GM2MField constructor’s other parameters

In addition to the specific on_delete* and through / through_fields
parameters, you can use the following optional keyword arguments when defining
a GM2MField. For the sake of consistency, they have the same signification
as in Django’s ManyToManyField and GenericForeignKey.


	verbose_name

	A human-readable name for the field. Defaults to a munged version of the
model class name.



	db_table

	The name of the database table to use for the automatically created through
model. Defaults to '<app_label>_<model_name>'.



	db_constraint

	Controls whether or not a constraint should be created in the database for
the internal foreign keys when the through model is automatically created.
Defaults to True.



	for_concrete_model

	If set to False, the field will be able to reference proxy models.
Defaults to True.



	related_name

	The name that will be used for the relation from a related object back to
this one. The same related name is used for all the related models. Defaults
to '<src_model_name>_set'.



	related_query_name

	The name to use for the reverse filter name from the target model.
Defaults to the value of related_name or the model name.



	pk_maxlength

	This is useful when using an automatically created intermediate model, to
specify the length of the CharField used to store primary keys in the
GenericForeignKey. Indeed, the default value of 16 characters may not
be sufficient to accomodate certain large foreign key values (e.g. UUIDs).
Use None if you don’t want any limitation (this may cause performance
issues, though). Defaults to 16.








Migrations

django-gm2m fully supports Django migrations [https://docs.djangoproject.com/en/dev/topics/migrations/].

When generating migrations for an app using GM2MField, do not be surprised
to see a through_fields keyword argument (as a list containing 4 field
names) in the migration even if you did not provide it when creating the
GM2MField in your model. This is necessary for django’s migrations system
to keep track of the arguments assignment and build accurate model
representations from the migrations.




System checks

django-gm2m adds a few system checks, derived from built-in django checks
for related fields and many to many fields. Here are the errors they may raise,
with the builtin counterpart between brackets:


	gm2m.E001 [fields.E330]

	GM2MFields cannot be unique



	gm2m.E101 [fields.E331]

	Field specifies a many-to-many relation through model which has not been
installed



	gm2m.E102 [fields.E333]

	The model used as an intermediate model does not have a foreign key to
the source model



	gm2m.E103 [fields.E334]

	The model used as an intermediate model has more than one foreign key to
the source model, which is ambiguous (the one that is used is the first
declared in the model)



	gm2m.E104 [fields.E333]

	The model used as an intermediate model does not have a generic foreign
key



	gm2m.E105 [fields.E334]

	The model used as an intermediate model has more than one generic
foreign key, which is ambiguous (the one that is used is the first declared
in the model).



	gm2m.E106 [fields.E337]

	The field specifies through_fields but does not provide the names of the
two link fields that should be used for the relation through model



	gm2m.E107 [fields.E338]

	The model used as an intermediate model does not have the field specified
in through_fields



	gm2m.E108 [fields.E339]

	The field specified in through_fields is not a foreign key to the
source model



	gm2m.E109 [fields.E338]

	The model used as an intermediate model does not have the generic foreign
key field specified in through_fields



	gm2m.E110 [fields.E339]

	The field specified in through_fields is not a generic foreign key



	gm2m.E201 [fieldsE301]

	Field defines a relation with a model that has been swapped out



	gm2m.E202 [fields.E302]

	Reverse accessor for the field clashes with a field from the target model



	gm2m.E203 [fields.E303]

	Reverse query name for the field clashes with a field from the target model



	gm2m.E204 [fields.E304]

	Reverse accessor for the field clashes with reverse accessor from another
field



	gm2m.E205 [fields.E305]

	Reverse accessor for the field clashes with reverse query name from another
field








Future improvements


	Add Django admin and possibly limit_choices_to support










          

      

      

    

  

    
      
          
            
  
Warnings


Form field and django admin

Unlike django’s ManyToManyField, GM2MField has no default associated
form field. This may be added in the future, but for now a warning is raised
when a ModelForm attempts to automatically create a field for GM2MField.

This warning is also raised when automatically creating an admin form for a
model featuring a GM2MField.




(De)Serialization

Since version 0.4.2, django-gm2m supports serialization and deserialisation
to and from fixture files (JSON, XML, YAML …) using the dumpdata and
loaddata management commands.


dumpdata and natural keys

As you probably already know, django-gm2m relies on
django.contrib.contenttypes and needs to link ContentType objects. If
you use the dumpdata command without excluding the contenttypes app and
with standard primary/foreign keys, the data will contain dumped ContentType
objects which will be referenced by their standard primary key (an integer).

When you’ll attempt to load that data using loaddata, Django will at the
same attempt to recreate the needed ContentType objects, which primary
keys may not be consistent with your data, therefore raising a fixture loading
error.

To avoid that, it is advised to use the dumpdata command with the following
options in a project that makes use of django-gm2m:



	--natural-primary --natural-foreign to use natural keys instead of
actual primary keys in the dumped data (the natural key for a contenttype
is, for example, 'app_name.modelname')


	-e contenttypes to exclude the ContentType objects from the dumped
data. These objects are automatically recreated by django anyway







See this StackOverflow question and answers [http://stackoverflow.com/questions/853796/problems-with-contenttypes-when-loading-a-fixture-in-django] for more details.




Custom serializers

When a project using django-gm2m is initialized, the default django
serializers (namely json, xml, yaml) are overridden by specific
serializers that have been tuned to work with GM2MField.

This means that in case you have custom serializers in your project or app,
you will need to derive them from gm2m.serializers.*.Serializer instead of
django.core.serializers.*.Serializer (same for Deserializer). If you
don’t do that, (de)serialization of GM2MFields will not work.









          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          django-gm2m
        


        		
          Quick start
          
            		
              Installation
            


            		
              First steps
            


          


        


        		
          Features
          
            		
              Reverse relations
              
                		
                  Automatic creation
                


                		
                  Manual creation
                


                		
                  Manual creation on existing model
                


                		
                  Operations and queries on reverse relations
                


                		
                  Related models lookup
                


              


            


            		
              Deletion
            


            		
              Signals
            


            		
              Prefetching
            


            		
              Through models
            


            		
              GM2MField constructor’s other parameters
            


            		
              Migrations
            


            		
              System checks
            


            		
              Future improvements
            


          


        


        		
          Warnings
          
            		
              Form field and django admin
            


            		
              (De)Serialization
              
                		
                  dumpdata and natural keys
                


                		
                  Custom serializers
                


              


            


          


        


      


    
  

_static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





